coordinate
(noun)
a number representing the position of a point along a line, arc, or similar one-dimensional figure
Examples of coordinate in the following topics:
-
Cylindrical and Spherical Coordinates
- Cylindrical and spherical coordinates are useful when describing objects or phenomena with specific symmetries.
- While Cartesian coordinates have many applications, cylindrical and spherical coordinates are useful when describing objects or phenomena with specific symmetries.
- Then the $z$ coordinate is the same in both systems, and the correspondence between cylindrical $(\rho,\varphi)$ and Cartesian $(x,y)$ are the same as for polar coordinates, namely $x = \rho \cos \varphi; \, y = \rho \sin \varphi$.
- The spherical coordinates (radius $r$, inclination $\theta$, azimuth $\varphi$) of a point can be obtained from its Cartesian coordinates ($x$, $y$, $z$) by the formulae:
- A cylindrical coordinate system with origin $O$, polar axis $A$, and longitudinal axis $L$.
-
Polar Coordinates
- This is called the Cartesian coordinate system.
- Such definitions are called polar coordinates.
- Polar coordinates in $r$ and $\theta$ can be converted to Cartesian coordinates $x$ and $y$.
- A set of polar coordinates.
- The $x$ Cartesian coordinate is given by $r \cos \theta$ and the $y$ Cartesian coordinate is given by $r \sin \theta$.
-
Three-Dimensional Coordinate Systems
- The three-dimensional coordinate system expresses a point in space with three parameters, often length, width and depth ($x$, $y$, and $z$).
- Each parameter is perpendicular to the other two, and cannot lie in the same plane. shows a Cartesian coordinate system that uses the parameters $x$, $y$, and $z$.
- This is a three dimensional space represented by a Cartesian coordinate system.
- The cylindrical coordinate system is like a mix between the spherical and Cartesian system, incorporating linear and radial parameters.
- Identify the number of parameters necessary to express a point in the three-dimensional coordinate system
-
Double Integrals in Polar Coordinates
- In $R^2$, if the domain has a cylindrical symmetry and the function has several particular characteristics, you can apply the transformation to polar coordinates, which means that the generic points $P(x, y)$ in Cartesian coordinates switch to their respective points in polar coordinates.
- The polar coordinates $r$ and $\varphi$ can be converted to the Cartesian coordinates $x$ and $y$ by using the trigonometric functions sine and cosine:
- The Cartesian coordinates $x$ and $y$ can be converted to polar coordinates $r$ and $\varphi$ with $r \geq 0$ and $\varphi$ in the interval $(−\pi, \pi]$:
- In general, the best practice is to use the coordinates that match the built-in symmetry of the function.
- This figure illustrates graphically a transformation from cartesian to polar coordinates
-
Triple Integrals in Spherical Coordinates
- When the function to be integrated has a spherical symmetry, change the variables into spherical coordinates and then perform integration.
- When the function to be integrated has a spherical symmetry, it is sensible to change the variables into spherical coordinates and then perform integration.
- It's possible to use therefore the passage in spherical coordinates; the function is transformed by this relation:
- Points on $z$-axis do not have a precise characterization in spherical coordinates, so $\theta$ can vary from $0$ to $2 \pi$.
- Spherical coordinates are useful when domains in $R^3$ have spherical symmetry.
-
Triple Integrals in Cylindrical Coordinates
- When the function to be integrated has a cylindrical symmetry, it is sensible to integrate using cylindrical coordinates.
- When the function to be integrated has a cylindrical symmetry, it is sensible to change the variables into cylindrical coordinates and then perform integration.
- Also in switching to cylindrical coordinates, the $dx\, dy\, dz$ differentials in the integral become $\rho \, d\rho \,d\varphi \,dz$.
- Finally, it is possible to apply the final formula to cylindrical coordinates:
- Cylindrical coordinates are often used for integrations on domains with a circular base.
-
Vectors in Three Dimensions
- The mathematical representation of a physical vector depends on the coordinate system used to describe it.
- In the Cartesian coordinate system, a vector can be represented by identifying the coordinates of its initial and terminal point.
- Typically in Cartesian coordinates, one considers primarily bound vectors.
- A bound vector is determined by the coordinates of the terminal point, its initial point always having the coordinates of the origin $O = (0,0,0)$.
- The coordinate representation of vectors allows the algebraic features of vectors to be expressed in a convenient numerical fashion.
-
Conic Sections in Polar Coordinates
- Conic sections are sections of cones and can be represented by polar coordinates.
- In polar coordinates, a conic section with one focus at the origin is given by the following equation:
-
Area and Arc Length in Polar Coordinates
- Area and arc length are calculated in polar coordinates by means of integration.
- Since it can be very difficult to measure the length of an arc linearly, the solution is to use polar coordinates.
- Using polar coordinates allows us to integrate along the length of the arc in order to compute its length.
- Evaluate arc segment area and arc length using polar coordinates and integration
-
Surfaces in Space
- To say that a surface is "two-dimensional" means that, about each point, there is a coordinate patch on which a two-dimensional coordinate system is defined.
- For example, the surface of the Earth is (ideally) a two-dimensional surface, and latitude and longitude provide two-dimensional coordinates on it (except at the poles and along the 180th meridian).
- In spherical coordinates, the surface can be expressed simply by $r=R$.