Examples of damping in the following topics:
-
- The fluid will damp out the motion, more or less depending on whether it has the viscosity of water or honey.
- This looks like the equation of a damped sinusoid.
- First if $\frac{\gamma}{2\omega_0} < 1$ , corresponding to small damping, then the argument of the square root is positive and indeed we have a damped sinusoid.
- In this case the motion is said to be "over-damped" since there is no oscillation.
- The borderline case $\gamma = 2 \omega_0$ is called critical damping, in which case $x(t) = x_0 e^{-\frac{\gamma}{2} t}$ .
-
- Over time, the damped harmonic oscillator's motion will be reduced to a stop.
- Let the damping force be proportional to the mass' velocity by a proportionality constant, b, called the vicious damping coefficient.
- $\gamma^2 > 4\omega_0^2$ is the Over Damped case.
- $\gamma^2 < 4\omega_0^2$ is the Under Damped case.
- $\gamma^2 = 4\omega_0^2$ is theCritically Damped case.
-
- At first the finger is held steady, and the ball bounces up and down with a small amount of damping.
- In real life, most oscillators have damping present in the system.
- It is interesting that the widths of the resonance curves shown in depend on damping: the less the damping, the narrower the resonance.
- The more selective the radio is in discriminating between stations, the smaller its damping.
- The narrowest response is also for the least amount of damping.
-
- Driven harmonic oscillators are damped oscillators further affected by an externally applied force.
- If a frictional force (damping) proportional to the velocity is also present, the harmonic oscillator is described as a damped oscillator.
- Driven harmonic oscillators are damped oscillators further affected by an externally applied force F(t).
- \omega_0$, and the damping ratio $\!
- Describe a driven harmonic oscillator as a type of damped oscillator
-
- Back EMF, eddy currents, and magnetic damping are all due to induced EMF and can be explained by Faraday's law of induction.
- Eddy currents can produce significant drag, called magnetic damping, on the motion involved.
- A common physics demonstration device for exploring eddy currents and magnetic damping.
- (c) There is also no magnetic damping on a nonconducting bob, since the eddy currents are extremely small.
- Explain the relationship between the motional electromotive force, eddy currents, and magnetic damping
-
- In real oscillators, friction (or damping) slows the motion of the system.
- In many vibrating systems the frictional force $Ff$ can be modeled as being proportional to the velocity v of the object: $Ff = −cv$, where $c$ is called the viscous damping coefficient.
- Driven harmonic oscillator: Driven harmonic oscillators are damped oscillators further affected by an externally applied force $F(t)$.
- A solution of damped harmonic oscillator.
- Curves in different colors show various responses depending on the damping ratio.
-
- The causes of damping are extremely subtle.
- Try extending a damping piston of the sort used on doors.
- where $\gamma$ is a constant reflecting the strength of the damping.
- \label{damping} }$
- Square of the amplitude factor for forced, damped motion near a resonance $\omega_0$.
-
- The shock absorber is analogous to the resistance damping and limiting the amplitude of the oscillation.
- The forced but damped motion of the wheel on the car spring is analogous to an RLC series AC circuit.
- The shock absorber damps the motion and dissipates energy, analogous to the resistance in an RLC circuit.
-
- It is speculated that parasitic worms have the ability to damp down the immune system, which promotes an environment where they can thrive without being attached.
- In return, the damping down of the immune system is believed to be beneficial, as this may prevent the development of allergies.
-
- These homes often shared toilet facilities, had open sewers, and were prone to epidemics exacerbated by persistent dampness.