Chemical compound
Background Information
SOS Children offer a complete download of this selection for schools for use on schools intranets. SOS Children has looked after children in Africa for forty years. Can you help their work in Africa?
A chemical compound is a substance consisting of two or more different elements chemically bonded together in a fixed proportion by mass.
Nature of a chemical compound
Bonds
The atoms in the molecule can be held together by no bonds, covalent bonds or ionic bonds. For example H2O is held together by polar covalent bonds. Sodium chloride is an example of an ionic compound.
Fine-tuning the definition
There are some exceptions to the definition above. Certain crystalline compounds may be treated as chemical compounds despite varying in composition according to the presence or otherwise of elements trapped within the crystal structure. Some compounds regarded as chemically identical may have varying amounts of heavy or light isotopes of the constituent elements, which will make the ratio of elements by mass vary slightly. A compound therefore may not be completely homogenous, but for most purposes in chemistry it can be regarded as such.
Not all molecules are compounds. A diatomic molecule of hydrogen, represented by H2, is homonuclear — made of atoms of only one element, so is not regarded as a compound. Compounds are pure substances that contain two or more elements combined in a definite fixed proportion.
Formula
Chemists describe compounds using formula in various formats. For molecules, the formula for the molecular unit is shown. For polymeric materials, such as minerals and many metal oxides, the empirical formula is given, e.g. NaCl for table salt. The order of the elements in molecular and empirical formulas is C, then H and then alphabetical. Trifluoroacetic acid is thus described as C2HF3O2. More descriptive formulas convey structure information, illustrated again with trifluoroacetic acid. CF3CO2H. On the other hand, formulas for inorganic compounds often do not convey structural information, as illustrated by H2SO4 for a molecule that has no H-S bonds. A more descriptive presentation would be O2S(OH)2.
Elements form compounds to become more stable. They become stable when they have the maximum number of possible electrons in their outermost energy level, which is normally two or eight valence electrons. This is the reason that noble gases do not frequently react: they already possess eight valence electrons (the exception being helium, which requires only two valence electrons to achieve stability).
Phases and thermal properties
Compounds may have several possible phases. All compounds can exist as solids, at least at low enough temperatures. Molecular compounds may also exist as liquids, gases, and, in some cases, even plasmas. All compounds decompose upon applying heat. The temperature at which such fragmentation occurs is often called the decomposition temperature. Decomposition temperatures are not sharp and depend on the rate of heating. At sufficiently high temperatures, all compounds, either after they have decomposed somehow or in the act of decomposing, fragment into smaller compounds or to individual atoms.
CAS number
Every chemical compound that has been described in the literature carries a uniques numerical identifier, its CAS number.