Checked content


Background to the schools Wikipedia

This wikipedia selection has been chosen by volunteers helping SOS Children from Wikipedia for this Wikipedia Selection for schools. All children available for child sponsorship from SOS Children are looked after in a family home by the charity. Read more...

Andreas Cellarius's illustration of the Copernican system, from the Harmonia Macrocosmica (1660).

Heliocentrism, or heliocentricism, is the astronomical model in which the Earth and planets revolve around a stationary Sun at the centre of the Solar System. The word comes from the Greek ( ἥλιος helios "sun" and κέντρον kentron "centre"). Historically, heliocentrism was opposed to geocentrism, which placed the Earth at the centre. The notion that the Earth revolves around the Sun had been proposed as early as the 3rd century BC by Aristarchus of Samos, but Aristarchus's heliocentrism attracted little attention until Copernicus revived and elaborated it. Lucio Russo, however, argues that this is a misleading impression resulting from the loss of scientific works of the Hellenistic Era. Using indirect evidence he argues that a heliocentric view was expounded in Hipparchus's work on gravity.

It was not until the 16th century that a fully predictive mathematical model of a heliocentric system was presented, by the Renaissance mathematician, astronomer, and Catholic cleric Nicolaus Copernicus of Poland, leading to the Copernican Revolution. In the following century, Johannes Kepler elaborated upon and expanded this model to include elliptical orbits, and supporting observations made using a telescope were presented by Galileo Galilei.

With the observations of William Herschel, Friedrich Bessel, and others, astronomers realized that the sun was not the centre of the universe and by the 1920s Edwin Hubble had shown that it was part of a galaxy (the Milky Way) that was only one of many billions.

Early developments

A hypothetical geocentric model of the solar system(upper panel) in comparison to the heliocentric model (lower panel).

To anyone who stands and looks up at the sky, it seems that the Earth stays in one place, while everything in the sky rises in the east and sets in the west once a day. With more scrutiny, however, one will observe more complicated movements. The positions at which the Sun and moon rise change over the course of a year, some planets and stars do not appear at all for many months, and planets sometimes appear to have moved in the reverse direction for a while, relative to the background stars.

As these motions became better understood, more elaborate descriptions were required, the most famous of which was the geocentric Ptolemaic system, which achieved its full expression in the 2nd century. The Ptolemaic system was a sophisticated astronomical system that managed to calculate the positions for the planets to a fair degree of accuracy. Ptolemy himself, in his Almagest, points out that any model for describing the motions of the planets is merely a mathematical device, and since there is no actual way to know which is true, the simplest model that gets the right numbers should be used. However, he rejected the idea of a spinning earth as absurd as he believed it would create huge winds. His planetary hypotheses were sufficiently real that the distances of moon, sun, planets and stars could be determined by treating orbits' celestial spheres as contiguous realities. This made the stars' distance less than 20 Astronomical Units, a regression, since Aristarchus of Samos's heliocentric scheme had centuries earlier necessarily placed the stars at least two orders of magnitude more distant.

Greek and Hellenistic world


The non-geocentric model of the Universe was proposed by the Pythagorean philosopher Philolaus (d. 390 BCE). According to Philolaus, there was at the centre of the Universe a "central fire" around which the Earth, Sun, Moon and Planets revolved in uniform circular motion. This system postulated the existence of a counter-earth collinear with the Earth and central fire, with the same period of revolution around the central fire as the Earth. The Sun revolved around the central fire once a year, and the stars were stationary. The Earth maintained the same hidden face towards the central fire, rendering both it and the "counter-earth" invisible from Earth. The Pythagorean concept of uniform circular motion remained unchallenged for approximately the next 2000 years, and it was to the Pythagoreans that Copernicus referred to show that the notion of a moving Earth was neither new nor revolutionary. Kepler gave an alternative explanation of the Pythagoreans' "central fire" as the sun, "as most sects purposely hid[e] their teachings".

Heraclides of Pontus (4th century BCE) said that the rotation of the Earth explained the apparent daily motion of the celestial sphere. It used to be thought that he believed Mercury and Venus to revolve around the Sun, which in turn (along with the other planets) revolves around the Earth. Macrobius Ambrosius Theodosius (CE 395–423) later described this as the "Egyptian System," stating that "it did not escape the skill of the Egyptians," though there is no other evidence it was known in ancient Egypt.

Aristarchus of Samos
Aristarchus's 3rd century BC calculations on the relative sizes of the Earth, Sun and Moon, from a 10th century CE Greek copy

The first person known to have proposed a heliocentric system, however, was Aristarchus of Samos (c. 270 BCE). Like Eratosthenes, Aristarchus calculated the size of the Earth, and measured the size and distance of the Moon and Sun, in a treatise which has survived. From his estimates, he concluded that the Sun was six to seven times wider than the Earth and thus hundreds of times more voluminous. His writings on the heliocentric system are lost, but some information is known from surviving descriptions and critical commentary by his contemporaries, such as Archimedes. Some have suggested that his calculation of the relative size of the Earth and Sun led Aristarchus to conclude that it made more sense for the Earth to be moving than for the huge Sun to be moving around it. Though the original text has been lost, a reference in Archimedes' book The Sand Reckoner describes another work by Aristarchus in which he advanced an alternative hypothesis of the heliocentric model. Archimedes wrote:

You King Gelon are aware the 'universe' is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the centre of the Earth. This is the common account as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the 'universe' just mentioned. His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the centre of the sphere bears to its surface.

Aristarchus believed the stars to be very far away, and saw this as the reason why there was no visible parallax, that is, an observed movement of the stars relative to each other as the Earth moved around the Sun. The stars are in fact much farther away than the distance that was generally assumed in ancient times, which is why stellar parallax is only detectable with telescopes.

Archimedes says that Aristarchus made the stars' distance larger, suggesting that he was answering the natural objection that heliocentrism requires stellar parallactic oscillations. He apparently agreed to the point but placed the stars so distant as to make the parallactic motion invisibly minuscule. Thus heliocentrism opened the way for realization that the universe was larger than the geocentrists taught.

Seleucus of Seleucia

Since Plutarch mentions the "followers of Aristarchus" in passing, it is likely that there were other astronomers in the Classical period who also espoused heliocentrism, but whose work was lost. The only other astronomer from antiquity known by name who is known to have supported Aristarchus' heliocentric model was Seleucus of Seleucia (b. 190 BCE), a Hellenistic astronomer who flourished a century after Aristarchus in the Seleucid empire. Seleucus adopted the heliocentric system of Aristarchus and is said to have proved the heliocentric theory. According to Bartel Leendert van der Waerden, Seleucus may have proved the heliocentric theory by determining the constants of a geometric model for the heliocentric theory and by developing methods to compute planetary positions using this model. He may have used early trigonometric methods that were available in his time, as he was a contemporary of Hipparchus. A fragment of a work by Seleucus has survived in Arabic translation, which was referred to by Rhazes (b. 865).

Alternatively, his explanation may have involved the phenomenon of tides, which he supposedly theorized to be caused by the attraction to the Moon and by the revolution of the Earth around the Earth-Moon 'centre of mass'.

Western Christendom

Nicholas of Cusa, 15th century, asked whether there was any reason to assert that any point was the centre of the universe.

There were occasional speculations about heliocentrism in Europe before Copernicus. In Roman Carthage, the pagan Martianus Capella (5th century A.D.) expressed the opinion that the planets Venus and Mercury did not go about the Earth but instead circled the Sun. Capella's model was discussed in the Early Middle Ages by various anonymous 9th-century commentators and Copernicus mentions him as an influence on his own work.

During the Late Middle Ages, Bishop Nicole Oresme discussed the possibility that the Earth rotated on its axis, while Cardinal Nicholas of Cusa in his Learned Ignorance asked whether there was any reason to assert that the Sun (or any other point) was the centre of the universe. In parallel to a mystical definition of God, Cusa wrote that "Thus the fabric of the world (machina mundi) will quasi have its centre everywhere and circumference nowhere."


Statue of Aryabhata on the grounds of Inter-University Centre for Astronomy and Astrophysics, Pune. As there is no known information regarding his appearance, any image of Aryabhata originates from an artist's conception.

Aryabhata (476–550), in his magnum opus Aryabhatiya (499), propounded a planetary model in which the Earth was taken to be spinning on its axis and the periods of the planets were given with respect to the Sun. He accurately calculated many astronomical constants, such as the periods of the planets, times of the solar and lunar eclipses, and the instantaneous motion of the Moon. Early followers of Aryabhata's model included Varahamihira, Brahmagupta, and Bhaskara II.

Nilakantha Somayaji (1444–1544), in his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, developed a computational system for a partially heliocentric planetary model, in which the planets orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. In the Tantrasangraha (1500), he further revised his planetary system, which was mathematically more accurate at predicting the heliocentric orbits of the interior planets than both the Tychonic and Copernican models, but like Indian astronomy in general fell short of proposing models of the universe. Nilakantha's planetary system also incorporated the Earth's rotation on its axis. Most astronomers of the Kerala school of astronomy and mathematics seem to have accepted his planetary model.

Medieval Islamic world

An illustration from al-Biruni's astronomical works, explains the different phases of the moon, with respect to the position of the sun. Al-Biruni suggested that if the Earth rotated on its axis this would be consistent with astronomical theory. He discussed heliocentrism but considered it was a philosophical problem.

Because of the scientific dominance of the Ptolemaic system in Islamic astronomy, the Muslim astronomers accepted unanimously the geocentric model. However, several Muslim scholars questioned the Earth's apparent immobility and centrality within the universe. Alhazen wrote a scathing critique of Ptolemy's model in his Doubts on Ptolemy (c. 1028), which some have interpreted to imply he was criticizing Ptolemy's geocentrism, but most agree that he was actually criticizing the details of Ptolemy's model rather than his geocentrism. Alhazen did, however, later propose the Earth's rotation on its axis in The Model of the Motions (c. 1038).

Abu Rayhan Biruni (b. 973) discussed the possibility of whether the Earth rotated about its own axis and around the Sun, but in his Masudic Canon, he set forth the principles that the Earth is at the centre of the universe and that it has no motion of its own. He was aware that if the Earth rotated on its axis and around the Sun, this would be consistent with his astronomical parameters, but he considered this a philosophical problem rather than a mathematical one. At the Maragha observatory, Najm al-Dīn al-Qazwīnī al-Kātibī (d. 1277), in his Hikmat al-'Ain, wrote an argument for a heliocentric model, but later abandoned the model. Qutb al-Din Shirazi (b. 1236) also discussed the possibility of heliocentrism, but rejected it. At the Maragha and Samarkand observatories, the Earth's rotation was discussed by Tusi (b. 1201) and Qushji (b. 1403); the arguments and evidence they used resemble those used by Copernicus to support the Earth's motion.

However, it remains a fact that the Maragha school never made the big leap to heliocentrism. Some scholars maintain that the thought of the Maragha school, in particular the mathematical device known as the Tusi couple, influenced the work of Copernicus. However, this remains speculative as no researcher has yet proven that Copernicus knew about Tusi's work or the Maragha school. It has been argued that, given some differences between the two models, it is more likely that Copernicus could have taken the ideas found in the Tusi couple from Proclus's Commentary on the First Book of Euclid, who Copernicus cited. Another possible source for Copernicus's knowledge of this mathematical device is the Questiones de Spera of Nicole Oresme, who described how a reciprocating linear motion of a celestial body could be produced by a combination of circular motions similar to those proposed by al-Tusi.

Allusions to heliocentrism also can be found in the works of Muslim theologians and philosophers such as Fakhr al-Din al-Razi (b. 1149), Al-Zamakhshari (b. 1075), and Ottoman Sheikh ul-Islam Ebussuud Efendi (b.1490).

In his major work Tafsir al-Kabir, Fakhr al-Din al-Razi defends ideas of heliocentrism with only difference that the Sun is not mentioned as a static object or as a centre of the Universe:

Even though the Earth is described as a bed in this verse, in the other verse it is portrayed as a sphere. Spherical earth is revolving around the Sun. If questioned "How people and objects can stand on the Earth if the Earth, as a sphere, revolving around the Sun?", my answer will be that the Earth is such a huge sphere where flat surfaces appear."

Al-Zamakhshari in his work Al-Kashshaaf and Ebussuud Efendi in Irshadu'l-Akli's-Selim provide similar explanations which support heliocentrism.

Copernican revolution

Astronomical model

Nicolaus Copernicus, 16th century, described the first computational system explicitly tied to a heliocentric model

In the 16th century, Nicolaus Copernicus De revolutionibus presented a full discussion of a heliocentric model of the universe in much the same way as Ptolemy's Almagest had presented his geocentric model in the 2nd century. Copernicus discussed the philosophical implications of his proposed system, elaborated it in full geometrical detail, used selected astronomical observations to derive the parameters of his model, and wrote astronomical tables which enabled one to compute the past and future positions of the stars and planets. In doing so, Copernicus moved heliocentrism from philosophical speculation to predictive geometrical astronomy—in reality it did not predict the planets' positions any better than the Ptolemaic system. This theory resolved the issue of planetary retrograde motion by arguing that such motion was only perceived and apparent, rather than real: it was a parallax effect, as a car that one is passing seems to move backwards against the horizon. This issue was also resolved in the geocentric Tychonic system; the latter, however, while eliminating the major epicycles, retained as a physical reality the irregular back-and-forth motion of the planets, which Kepler characterized as a " pretzel".

Copernicus cited Aristarchus in an early (unpublished) manuscript of De Revolutionibus (which still survives) so he was clearly aware of at least one previous proponent of the heliocentric thesis. However, in the published version he restricts himself to noting that in works by Cicero he had found an account of the theories of Hicetas and that Plutarch had provided him with an account of the Pythagoreans Heraclides Ponticus, Philolaus, and Ecphantus. These authors had proposed a moving earth, which did not, however, revolve around a central sun.

Religious attitudes to heliocentrism

Heliocentrism had been in conflict with religion before Copernicus. One of the few pieces of information we have about the reception of Aristarchus's heliocentric system comes from a passage in Plutarch's dialogue, Concerning the Face which Appears in the Orb of the Moon. According to one of Plutarch's characters in the dialogue, the philosopher Cleanthes had held that Aristarchus should be charged with impiety for "moving the hearth of the world".

Circulation of Commentariolus (before 1533)

The first information about the heliocentric views of Nicolaus Copernicus were circulated in manuscript. Although only in manuscript, Copernicus' ideas were well known among astronomers and others. His ideas contradicted the then-prevailing understanding of the Bible. In the King James Bible First Chronicles 16:30 state that "the world also shall be stable, that it be not moved." Psalm 104:5 says, "[the Lord] Who laid the foundations of the earth, that it should not be removed for ever." Ecclesiastes 1:5 states that "The sun also ariseth, and the sun goeth down, and hasteth to his place where he arose."

Nonetheless, in 1533, Johann Albrecht Widmannstetter delivered in Rome a series of lectures outlining Copernicus' theory. The lectures were heard with interest by Pope Clement VII and several Catholic cardinals. On November 1, 1536, Archbishop of Capua Nikolaus von Schönberg wrote a letter to Copernicus from Rome encouraging him to publish a full version of his theory.

However, in 1539, Martin Luther said:

"There is talk of a new astrologer who wants to prove that the earth moves and goes around instead of the sky, the sun, the moon, just as if somebody were moving in a carriage or ship might hold that he was sitting still and at rest while the earth and the trees walked and moved. But that is how things are nowadays: when a man wishes to be clever he must . . . invent something special, and the way he does it must needs be the best! The fool wants to turn the whole art of astronomy upside-down. However, as Holy Scripture tells us, so did Joshua bid the sun to stand still and not the earth."

This was reported in the context of a conversation at the dinner table and not a formal statement of faith. Melanchthon, however, opposed the doctrine over a period of years.

Publication of de Revolutionibus (1543)

Nicolaus Copernicus published the definitive statement of his system in De Revolutionibus in 1543. Copernicus began to write it in 1506 and finished it in 1530, but did not publish it until the year of his death. Although he was in good standing with the Church and had dedicated the book to Pope Paul III, the published form contained an unsigned preface by Osiander defending the system and arguing that it was useful for computation even if its hypotheses were not necessarily true. Possibly because of that preface, the work of Copernicus inspired very little debate on whether it might be heretical during the next 60 years. There was an early suggestion among Dominicans that the teaching of heliocentrism should be banned, but nothing came of it at the time.

Some years after the publication of De Revolutionibus John Calvin preached a sermon in which he denounced those who "pervert the course of nature" by saying that "the sun does not move and that it is the earth that revolves and that it turns". On the other hand, Calvin is not responsible for another famous quotation which has often been misattributed to him:

"Who will venture to place the authority of Copernicus above that of the Holy Spirit?"

It has long been established that this line cannot be found in any of Calvin's works. It has been suggested that the quotation was originally sourced from the works of Lutheran theologian Abraham Calovius.

Tycho Brahe's geo-heliocentric system c. 1587

In this depiction of the Tychonic system, the objects on blue orbits (the Moon and the Sun) revolve around the Earth. The objects on orange orbits (Mercury, Venus, Mars, Jupiter, and Saturn) revolve around the Sun. Around all is a sphere of fixed stars, located just beyond Saturn.

Prior to the publication of De Revolutionibus, the widely accepted system had been that which was proposed by Ptolemy, in which the Earth was the centre of the universe and all celestial bodies orbited it. Tycho Brahe, arguably the most accomplished astronomer of his time, advocated against Copernicus's heliocentric system and for an alternative to the Ptolemaic geocentric system: a geo-heliocentric system now known as the Tychonic system in which the five then known planets orbit the sun, while the sun and the moon orbit the earth.

Tycho appreciated the Copernican system, but objected to the idea of a moving Earth on the basis of physics, astronomy, and religion. The Aristotelian physics of the time (modern Newtonian physics was still a century away) offered no physical explanation for the motion of a massive body like Earth, whereas it could easily explain the motion of heavenly bodies by postulating that they were made of a different sort substance called aether that moved naturally. So Tycho said that the Copernican system “... expertly and completely circumvents all that is superfluous or discordant in the system of Ptolemy. On no point does it offend the principle of mathematics. Yet it ascribes to the Earth, that hulking, lazy body, unfit for motion, a motion as quick as that of the aethereal torches, and a triple motion at that.” Likewise, Tycho took issue with the vast distances to the stars that Aristarchus and Copernicus had assumed in order to explain the lack of any visible parallax. Tycho had measured the apparent sizes of stars (now known to be illusory – see stellar magnitude), and used geometry to calculate that in order to both have those apparent sizes and be as far away as heliocentrism required, stars would have to be huge (much larger than the sun; the size of Earth's orbit or larger). Regarding this Tycho wrote, “Deduce these things geometrically if you like, and you will see how many absurdities (not to mention others) accompany this assumption [of the motion of the earth] by inference.” He also cited the Copernican system's "opposition to the authority of Sacred Scripture in more than one place" as a reason why one might wish to reject it, and observed that his own geoheliocentric alternative “offended neither the principles of physics nor Holy Scripture”.

The Jesuit astronomers in Rome were at first unreceptive to Tycho's system; the most prominent, Clavius, commented that Tycho was "confusing all of astronomy, because he wants to have Mars lower than the Sun." However, after the advent of the telescope showed problems with some geocentric models (by demonstrating that Venus circles the sun, for example), the Tychonic system and variations on that system became very popular among geocentrists, and the Jesuit astronomer Giovanni Battista Riccioli would continue Tycho's use of physics, stellar astronomy (now with a telescope), and religion to argue against heliocentrism and for Tycho's system well into the seventeenth century (see Riccioli).

Publication of Starry messenger (1610)

In the 17th century AD Galileo Galilei opposed the Roman Catholic Church by his strong support for heliocentrism

Galileo was able to look at the night sky with the newly invented telescope. Then he published his discoveries in Sidereus Nuncius including (among other things) the moons of Jupiter and that Venus exhibited a full range of phases. These discoveries were not consistent with the Ptolemeic model of the solar system. As the Jesuit astronomers confirmed Galileo's observations, the Jesuits moved toward Tycho's teachings.

Publication of Letter to the Grand Duchess (1615)

In a Letter to the Grand Duchess Christina, Galileo defended heliocentrism, and claimed it was not contrary to Scriptures (see Galileo affair). He took Augustine's position on Scripture: not to take every passage literally when the scripture in question is a book of poetry and songs, not a book of instructions or history. The writers of the Scripture wrote from the perspective of the terrestrial world, and from that vantage point the sun does rise and set. In fact, it is the Earth's rotation which gives the impression of the sun in motion across the sky.

The decree of 1616

The Letter to the Grand Duchess Christina prompted the papal authorities to decide whether heliocentrism was acceptable. Galileo was summoned to Rome to defend his position. The Church accepted the use of heliocentrism as a calculating device, but opposed it as a literal description of the solar system. Cardinal Robert Bellarmine himself considered that Galileo's model made "excellent good sense" on the ground of mathematical simplicity; that is, as a hypothesis (see above). And he said:

"If there were a real proof that the Sun is in the centre of the universe, that the Earth is in the third sphere, and that the Sun does not go round the Earth but the Earth round the Sun, then we should have to proceed with great circumspection in explaining passages of Scripture which appear to teach the contrary, and we should rather have to say that we did not understand them than declare an opinion false which has been proved to be true. But I do not think there is any such proof since none has been shown to me."
—Koestler (1959), p. 447–448

Bellarmine supported a ban on the teaching of the idea as anything but hypothesis. In 1616 he delivered to Galileo the papal command not to "hold or defend" the heliocentric idea. The Vatican files suggest that Galileo was forbidden to teach heliocentrism in any way whatsoever, but whether this ban was known to Galileo is a matter of dispute.

Publication of Epitome astronomia Copernicanae (1617–1621)

In Astronomia nova (1609), Johannes Kepler had used an elliptical orbit to explain the motion of Mars. In Epitome astronomia Copernicanae he developed a heliocentric model of the solar system in which all the planets have elliptical orbits. This provided significantly increased accuracy in predicting the position of the planets. Kepler's ideas were not immediately accepted. Galileo for example completely ignored Kepler's work. Kepler proposed heliocentrism as a physical description of the solar system and Epitome astronomia Copernicanae was placed on the index of prohibited books despite Kepler being a Protestant.

Publication of Dialogue concerning the two chief world systems

Pope Urban VIII encouraged Galileo to publish the pros and cons of Heliocentrism. In the event, Galileo's Dialogue concerning the two chief world systems clearly advocated heliocentrism and appeared to make fun of the Pope. Urban VIII became hostile to Galileo and he was again summoned to Rome. Galileo's trial in 1633 involved making fine distinctions between "teaching" and "holding and defending as true". For advancing heliocentric theory Galileo was forced to recant Copernicanism and was put under house arrest for the last few years of his life.

According to J. L. Heilbron, informed contemporaries of Galileo's:

"appreciated that the reference to heresy in connection with Galileo or Copernicus had no general or theological significance."

Subsequent developments

Rene Descartes postponed, and ultimately never finished, his treatise The World, which included a heliocentric model. But ultimately the Galileo affair did little to slow the spread of heliocentrism across Europe, as Kepler's Epitome of Copernican Astronomy became increasingly influential in the coming decades. By 1686 the model was well enough established that the general public was reading about it in Conversations on the Plurality of Worlds, published in France by Bernard le Bovier de Fontenelle and translated into English and other languages in the coming years. It has been called "one of the first great popularizations of science."

In 1687, Isaac Newton published Philosophiæ Naturalis Principia Mathematica, which provided an explanation for Kepler's laws in terms of universal gravitation and what came to be known as Newton's laws of motion. This placed heliocentrism on a firm theoretical foundation, although Newton's heliocentrism was of a somewhat modern kind. Already in the mid-1680s he recognized the "deviation of the Sun" from the centre of gravity of the solar system. For Newton it was not precisely the centre of the Sun or any other body that could be considered at rest, but "the common centre of gravity of the Earth, the Sun and all the Planets is to be esteem'd the Centre of the World", and this centre of gravity "either is at rest or moves uniformly forward in a right line" (Newton adopted the "at rest" alternative in view of common consent that the centre, wherever it was, was at rest)

Meanwhile the Church remained opposed to heliocentrism as a literal description, but this did not by any means imply opposition to all astronomy; indeed, it needed observational data to maintain its calendar. In support of this effort it allowed the cathedrals themselves to be used as solar observatories called meridiane; i.e., they were turned into "reverse sundials", or gigantic pinhole cameras, where the Sun's image was projected from a hole in a window in the cathedral's lantern onto a meridian line.

In 1664, Pope Alexander VII published his Index Librorum Prohibitorum Alexandri VII Pontificis Maximi jussu editus (Index of Prohibited Books, published by order of Alexander VII, P.M.) which included all previous condemnations of heliocentric books.

In the mid-eighteenth century the Church's opposition began to fade. An annotated copy of Newton's Principia was published in 1742 by Fathers le Seur and Jacquier of the Franciscan Minims, two Catholic mathematicians, with a preface stating that the author's work assumed heliocentrism and could not be explained without the theory. In 1758 the Catholic Church dropped the general prohibition of books advocating heliocentrism from the Index of Forbidden Books. Pope Pius VII approved a decree in 1822 by the Sacred Congregation of the Inquisition to allow the printing of heliocentric books in Rome.

Heliocentrism and Judaism

Already in the Talmud, Greek philosophy and science under general name "Greek wisdom" were considered dangerous. They were put under ban then and later for some periods (for example, in 13-5 a beit din (rabbinical court) in Barcelona forbade men younger than 25 from studying secular philosophy or the natural sciences (although an exception was made for those who studied medicine). Possibly due to this the system of Nicolaus Copernicus did not cause furious resistance, although it was found to be contradicting verses of Tanakh (Jewish Bible).

The first to mention the new system was Maharal of Prague, although he did not mention Copernicus, the author of the system. In his book "Be'er ha-Golah", in 1593 Maharal used the appearance of the new system to show that scientific theories are not reliable enough – even astronomy was turned upside-down.

Copernicus is mentioned for the first time in Hebrew in the books of David Gans (1541–1613), who worked with Tycho Brahe and Johannes Kepler. Gans wrote two books on astronomy: a short one "Magen David" (1612) and a full one "Nehmad veNaim" (published only in 1743). He described objectively three systems: Ptolemy, Copernicus and of Tycho Brahe without taking sides.

In 1629 a new Hebrew book "Elim" by Joseph Solomon Delmedigo (1591–1655) appeared. The author says that the arguments of Copernicus are so strong, that only an imbecile will not accept them. Delmedigo studied at Padua and was acquainted with Galileo.

The following wave of Hebrew literature on the subject is from the 18th century. Most of its authors were for Copernicus, although David Nieto and Tobias Cohn were exceptions. These two authors gave the same reason for opposing heliocentrism—namely, contradiction of the Bible—although Nieto merely rejected the new system on those grounds without much passion, whereas Hacohen went so far as to call Copernicus «a first-born of Satan». Hacohen also mentions the fact that the Sages of Talmud derived the Hebrew name of Earth from the verb "run".

In later periods there were no explicit attacks on heliocentrism, although some Rabbis were not sure of it.

In the 20th century R. M.M. Schneerson suggested that the theory of relativity makes the question obsolete, as he writes, "based on the understanding of science at this point".

The view of modern science

Kepler's laws of planetary motion were used as arguments in favour of the heliocentric hypothesis. Three apparent proofs of the heliocentric hypothesis were provided in 1727 by James Bradley, in 1838 by Friedrich Wilhelm Bessel and in 1851 by Foucault. Bessel proved that the parallax of a star was greater than zero by measuring the parallax of 0.314 arcseconds of a star named 61 Cygni. In the same year Friedrich Georg Wilhelm Struve and Thomas Henderson measured the parallaxes of other stars, Vega and Alpha Centauri.

The thinking that the heliocentric view was also not true in a strict sense was achieved in steps. That the Sun was not the centre of the universe, but one of innumerable stars, was strongly advocated by the mystic Giordano Bruno. Over the course of the 18th and 19th centuries, the status of the Sun as merely one star among many became increasingly obvious. By the 20th century, even before the discovery that there are many galaxies, it was no longer an issue.

The concept of an absolute velocity, including being "at rest" as a particular case, is ruled out by the principle of relativity, also eliminating any obvious "centre" of the universe as a natural origin of coordinates. Some forms of Mach's principle consider the frame at rest with respect to the distant masses in the universe to have special properties.

Even if the discussion is limited to the solar system, the Sun is not at the geometric centre of any planet's orbit, but rather approximately at one focus of the elliptical orbit. Furthermore, to the extent that a planet's mass cannot be neglected in comparison to the Sun's mass, the center of gravity of the solar system is displaced slightly away from the centre of the Sun. (The masses of the planets, mostly Jupiter, amount to 0.14% of that of the Sun.) Therefore a hypothetical astronomer on an extrasolar planet would observe a small "wobble" in the Sun's motion.

Modern use of geocentric and heliocentric

In modern calculations the terms "geocentric" and "heliocentric" are often used to refer to reference frames. In such systems the origin in the centre of mass of the Earth, of the Earth–Moon system, of the Sun, of the Sun plus the major planets, or of the entire solar system can be selected; see centre-of-mass frame. This leads to such terms as "heliocentric velocity" and "heliocentric angular momentum". In this heliocentric picture, any planet of the Solar System can be used as a source of mechanical energy because it moves relatively to the Sun. A smaller body (either artificial or natural) may gain heliocentric velocity due to gravity assist – this effect can change the body's mechanical energy in heliocentric reference frame (although it will not changed in the planetary one). However, such selection of "geocentric" or "heliocentric" frames is merely a matter of computation. It does not have philosophical implications and does not constitute a distinct physical or scientific model. From the point of view of General Relativity, inertial reference frames do not exist at all, and any practical reference frame is only an approximation to the actual space-time, which can have higher or lower precision.

Retrieved from ""