Checked content

File:Temp-sunspot-co2.svg

Description
English: Global average temperature, atmospheric CO2, and sunspot activity since 1850. Thick lines for temperature and sunspots represent a 25 year moving average smoothing of the raw data.
Date 11 January 2009 (first version); 10 March 2007 (last version)
Source Transferred from en.wikipedia; transferred to Commons by User:Anrie using CommonsHelper.
Author Original uploader was Leland McInnes at en.wikipedia
Permission
( Reusing this file)

Released under the GNU Free Documentation License.

Global average temperature, atmospheric CO2, and sunspot activity since 1850. Thick lines for temperature and sunspots represent a 25 year moving average smoothing of the raw data.

This figure was produced by Leland McInnes using python and matplotlib and is licensed under the GFDL. All data is from publicly available sources.

Contents

Data Sources

  1. (light blue) Law Dome CO2 Data: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law_co2.txt
  2. (blue) Mauna Loa CO2 data: http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_mm_mlo.dat
  3. (red) Temperature Data: http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt
  4. (orange) Sunspot data: http://sidc.oma.be/DATA/yearssn.dat

Plot Generation

The plot was generated by the following Python script:

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pylab as plt
import urllib
 
def smooth(signal, window_size):
    extended_signal = signal[window_size:0:-1] + signal + signal[-1:-window_size:-1]
    s = np.array(extended_signal)
    w = np.hamming(window_size)
    y = np.convolve(w/w.sum(), s, mode="same")
    return y[window_size:-window_size+1]
 
temp_file = urllib.urlopen("http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt")
data_rows = [x.split() for x in temp_file][0:-1:2]
temp_years = [int(x[0]) for x in data_rows]
temps = [float(x[-1]) for x in data_rows]
 
#co2_file = urllib.urlopen("http://web.archive.org/web/20070829134646/http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_mm_mlo.dat")
co2_file = urllib.urlopen("ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt")
data_rows = [x.split() for x in co2_file if not x.startswith("#") and x.find("-99.99") == -1]
co2_years = [(float(x[0]) + (float(x[1])-0.5)/12.) for x in data_rows]
co2concs = [float(x[3]) for x in data_rows]
 
lawco2_file = urllib.urlopen("ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law_co2.txt")
data_rows = [x.split() for x in lawco2_file if x.startswith("     1")]
del data_rows[[float(x[0]) for x in data_rows].index(1010.):]
lawco2_years = [float(x[0]) for x in data_rows]
lawco2concs = [float(x[-1]) for x in data_rows]
 
sunspot_file = urllib.urlopen("http://sidc.oma.be/DATA/yearssn.dat")
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pylab as plt
import urllib
 
def smooth(signal, window_size):
    extended_signal = signal[window_size:0:-1] + signal + signal[-1:-window_size:-1]
    s = np.array(extended_signal)
    w = np.hamming(window_size)
    y = np.convolve(w/w.sum(), s, mode="same")
    return y[window_size:-window_size+1]
 
temp_file = urllib.urlopen("http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3gl.txt")
data_rows = [x.split() for x in temp_file][0:-1:2]
temp_years = [int(x[0]) for x in data_rows]
temps = [float(x[-1]) for x in data_rows]
 
#co2_file = urllib.urlopen("http://web.archive.org/web/20070829134646/http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_mm_mlo.dat")
co2_file = urllib.urlopen("ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt")
data_rows = [x.split() for x in co2_file if not x.startswith("#") and x.find("-99.99") == -1]
co2_years = [(float(x[0]) + (float(x[1])-0.5)/12.) for x in data_rows]
co2concs = [float(x[3]) for x in data_rows]
 
lawco2_file = urllib.urlopen("ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law_co2.txt")
data_rows = [x.split() for x in lawco2_file if x.startswith("     1")]
del data_rows[[float(x[0]) for x in data_rows].index(1010.):]
lawco2_years = [float(x[0]) for x in data_rows]
lawco2concs = [float(x[-1]) for x in data_rows]
 
sunspot_file = urllib.urlopen("http://sidc.oma.be/DATA/yearssn.dat")
data_rows = [x.split() for x in sunspot_file if "*" not in x]
sun_years = [float(x[0]) for x in data_rows]
sunspots = [float(x[-1]) for x in data_rows]
 
smoothed_temps = smooth(temps, 25)
smoothed_sunspots = smooth(sunspots, 25)
 
base_ax = plt.axes()
base_ax.yaxis.tick_left()
plt.yticks([])
plt.xlim(1850,2012)
plt.xlabel("Year", size=16)
plt.title("Temperature, CO$_2$, and Sunspots", size=22)
 
temp_ax = plt.axes([0.125,0.5,0.775,0.4], frameon=False)
temp_ax.yaxis.tick_left()
plt.plot(temp_years, temps, '#FF2200')
tline  = plt.plot(temp_years, smoothed_temps, '#AA0000', lw=3)
plt.xlim(1850,2012)
plt.yticks(np.arange(-0.6,0.6,0.2))
plt.ylabel(u'Temperature anomaly (C)', size=14)
plt.xticks([])
 
co2_ax = plt.axes([0.125,0.3,0.775,0.4], frameon=False)
co2_ax.yaxis.tick_right()
co2_ax.yaxis.set_label_position("right")
co2_ax.xaxis.tick_bottom()
plt.plot(co2_years, co2concs, '#44AAFF')
cline = plt.plot(lawco2_years, lawco2concs, '#2288EE', lw=2)
plt.xlim(1850,2012)
plt.ylabel(r'CO$_2$ (ppm)', size=14)
plt.xticks([])
 
sun_ax = plt.axes([0.125,0.1,0.775,0.4], frameon=False)
sun_ax.yaxis.tick_left()
plt.plot(sun_years, sunspots, "#FFDD00")
sline = plt.plot(sun_years, smoothed_sunspots, "#FF9900", lw=3)
plt.xlim(1850,2012)
plt.yticks(np.arange(0,200,50))
plt.ylabel("Sunspot number", size=14)
plt.xticks([])
 
plt.axes(base_ax)
t_proxy = plt.Line2D([0], [0], c='#AA0000', lw=3)
c_proxy = plt.Line2D([0], [0], c='#2288EE', lw=3)
s_proxy = plt.Line2D([0], [0], c='#FF9900', lw=3)
plt.legend((t_proxy, c_proxy, s_proxy), ("Temperature", "CO$_2$", "Sunspots"), "upper left")
 
#plt.legend((tline, cline, sline), ("Temperature", "CO$_2$", "Sunspots"), "upper left")
plt.savefig("temp-co2-sunspot.svg")
plt.show()

The plot can likely be updated for more recent data using these same script, though minor modifications may be required for changes in data formats, locations, etc.

Related Images

Licensing

Leland McInnes at the English language Wikipedia, the copyright holder of this work, hereby publishes it under the following license:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Subject to disclaimers.

w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. Subject to disclaimers.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
  • share alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.
This licensing tag was added to this file as part of the GFDL licensing update.

The following pages on Schools Wikipedia link to this image (list may be incomplete):

Metadata

The best way to learn

Wikipedia for Schools was collected by SOS Children's Villages. SOS Children's Villages is there for the children in our care until they are ready for independence. We have helped children in Africa for many years - you can help too...