Anode

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Diagram of a zinc anode in a galvanic cell.

An anode (pronounced as a-node) is an electrode through which (positive) electric current flows into a polarized electrical device. Mnemonic: ACE (Anode Current Enters).

To dispel a common misconception, often incorrectly inferred from the correct fact that in all electrochemical devices negatively charged anions move towards the anode and/or positively charged cations move away from it, anode polarity is not always positive but depends on the device type, and sometimes even in which mode it operates, as determined by the above current direction-based universal definition. Examples:

An electrode through which current flows the other way (out) is a cathode.

Contents

  • 1 Etymology
  • 2 Flow of electrons
  • 3 Electrolytic anode
  • 4 Battery or galvanic cell anode
  • 5 Vacuum tube anode
  • 6 Diode anode
  • 7 Sacrificial anode
  • 8 Related antonym
  • 9 See also
  • 10 References
  • 11 External links

[edit] Etymology

The word was coined in 1834 from the Greek ἄνοδος (anodos), 'way up', by William Whewell, who had been consulted[1] by Michael Faraday over some new names needed to complete a paper on the recently discovered process of electrolysis. In that paper Faraday explained that when an electrolytic cell is oriented so that electric current traverses the "decomposing body" (electrolyte) in a direction "from East to West, or, which will strengthen this help to the memory, that in which the sun appears to move", the anode is where the current enters the electrolyte, on the East side: "ano upwards, odos a way ; the way which the sun rises" ([2], reprinted in [3]).

The use of 'East' to mean the 'in' direction (actually 'in' → 'East' → 'sunrise' → 'up') may appear unnecessarily contrived. Previously, as related in the first reference cited above, Faraday had used the more straightforward term "eisode" (the doorway where the current enters). His motivation for changing it to something meaning 'the East electrode' (other candidates had been "eastode", "oriode" and "anatolode") was to make it immune to a possible later change in the direction convention for current, whose exact nature was not known at the time. The reference he used to this effect was the Earth's magnetic field direction, which at that time was believed to be invariant. He fundamentally defined his arbitrary orientation for the cell as being that in which the internal current would run parallel to and in the same direction as a hypothetical magnetizing current loop around the local line of latitude which would induce a magnetic dipole field oriented like the Earth's. This made the internal current East to West as previously mentioned, but in the event of a later convention change it would have become West to East, so that the East electrode would not have been the 'way in' any more. Therefore "eisode" would have become inappropriate, whereas "anode" meaning 'East electrode' would have remained correct with respect to the unchanged direction of the actual phenomenon underlying the current, then unknown but, he thought, unambiguously defined by the magnetic reference. In retrospect the name change was unfortunate, not only because the Greek roots alone do not reveal the anode's function any more, but more importantly because, as we now know, the Earth's magnetic field direction on which the "anode" term is based is subject to reversals whereas the current direction convention on which the "eisode" term was based has no reason to change in the future.

Since the later discovery of the electron an easier to remember, and more durably correct technically although historically false etymology has been suggested: anode, from the Greek anodos, 'way up', 'the way (up) out of the cell (or other device) for electrons'.

[edit] Flow of electrons

The flow of electrons is always from anode–to–cathode outside of the cell or device, regardless of the cell or device type and operating mode, with the exception of diodes where electrode naming always assumes current flows in the forward direction (that of the arrow symbol), i.e. electrons flow in the opposite direction, even when the diode reverse-conducts either by accident (breakdown of a normal diode) or by design (breakdown of a Zener diode, photo-current of a photodiode or solar cell).

[edit] Electrolytic anode

In electrochemistry, the anode is where oxidation occurs, and is the positive polarity contact in an electrolytic cell. At the anode, anions (negative ions) are forced by the electrical potential to react chemically and give off electrons (oxidation) which then flow up and into the driving circuit.

[edit] Battery or galvanic cell anode

In a battery or galvanic cell, the anode is the negative electrode from which electrons flow out towards the external part of the circuit. Internally the positively charged cations are flowing away from the anode (even though it is negative and therefore would be expected to attract them, this is due to electrode potential relative to the electrolyte solution being different for the anode and cathode metal/electrolyte systems); but, external to the cell in the circuit, electrons are being pushed out through the negative contact and thus through the circuit by the voltage potential as would be expected. Note: in a galvanic cell, contrary to what occurs in an electrolytic cell, no anions flow to the anode, the internal current being entirely accounted for by the cations flowing away from it (cf drawing).

In the United States, many battery manufacturers regard the positive electrode as the anode, particularly in their technical literature. Though technically incorrect, it does resolve the problem of which electrode is the anode in a secondary (or rechargeable) cell. Using the traditional definition, the anode switches ends between charge and discharge cycles.

[edit] Vacuum tube anode

In electronic vacuum devices such as a cathode ray tube, the anode is the positively charged electron collector. In a tube, the anode is a charged positive plate that collects the electrons emitted by the cathode through electric attraction.

[edit] Diode anode

In a semiconductor diode, the anode is the P-doped layer which initially supplies holes to the junction. In the junction region, the holes supplied by the anode combine with electrons supplied from the N-doped region, creating a depleted zone. As the P-doped layer supplies holes to the depleted region, negative dope ions are left behind in the P-doped layer ('P' for positive charge-carrier ions). This creates a base negative charge on the anode. When a positive voltage is applied to anode of the diode from the circuit, more holes are able to be transferred to the depleted region, and this causes the diode to become conductive, allowing current to flow through the circuit. The terms anode and cathode should not be applied to a zener diode, since it allows flow in either direction, depending on the polarity of the applied potential (i.e. voltage).

[edit] Sacrificial anode

In cathodic protection, a metal anode that is more reactive to the corrosive environment of the system to be protected is electrically linked to the protected system, and partially corrodes or dissolves, which protects the metal of the system it is connected to. As an example, an iron or steel ship's hull may be protected by a zinc sacrificial anode, which will dissolve into the seawater and prevent the hull from being corroded. Sacrificial anodes are particularly needed for systems where a static charge is generated by the action of flowing liquids, such as pipelines and watercraft.

At least one anode is found in tank-type hot water heaters. The anode should be removed and checked yearly, and replaced if 6 inches (15 cm) or more of bare wire is showing. This will greatly extend the life of the tank.

Water heater anode information

[edit] Related antonym

The opposite of an anode is a cathode. When the current through the device is reversed, the electrodes switch functions, so anode becomes cathode, while cathode becomes anode, as long as the reversed current is applied, with the exception of diodes where electrode naming is always based on the forward current direction.