Depending on how many groups (or samples) with which we are working, different statistical tests are required.
One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory, or are calculated from the population. Two-sample tests are appropriate for comparing two samples, typically experimental and control samples from a scientifically controlled experiment. Paired tests are appropriate for comparing two samples where it is impossible to control important variables. Rather than comparing two sets, members are paired between samples so the difference between the members becomes the sample. Typically the mean of the differences is then compared to zero.
The number of groups or samples is also an important deciding factor when determining which test statistic is appropriate for a particular hypothesis test. A test statistic is considered to be a numerical summary of a data-set that reduces the data to one value that can be used to perform a hypothesis test. Examples of test statistics include the
A
where
A
where