Levels-of-processing theory looks at not only how a person receives information, but what the person does with the information after it is received and how that affects overall retention. Fergus Craik and Robert Lockhart determined that memory does not have fixed stores of space; rather, there are several different ways a person can encode and retain data in his or her memory. The consensus was that information is easier to transfer to long-term memory when it can be related to other memories or information the person is familiar with.
There are three levels of processing for verbal data: structural, phonetic, and semantic. These levels progress from the most shallow (structural) to the deepest (semantic). Each level allows a person to make sense of the information and relate it to past memories, determining if the information should be transferred from the short-term memory to the long-term memory. The deeper the processing of information, the easier it is to retrieve later.
Structural Processing
Structural processing examines the structure of a word—for example, the font of the typed word or the letters within in it. It is how we assess the appearance of the words to make sense of them and provide some type of simple meaning.
Letters
Processing how a word looks is known as structural processing.
Structural processing is the shallowest level of processing: If you see a sign for a restaurant but only engage in structural processing, you might remember that the sign was purple with a cursive font, but not actually remember the name of the restaurant.
Phonetic Processing
Phonetic processing is how we hear the word—the sounds it makes when the letters are read together. We compare the sound of the word to other words we have heard in order to retain some level of meaning in our memory. Phonetic processing is deeper than structural processing; that is, we are more likely to remember verbal information if we process it phonetically. To return to the example of trying to remember the name of a restaurant: if the name of the restaurant has no semantic meaning to you (for instance, if it's a word in another language, like "Vermicelli"), you might still be able to remember the name if you have processed it phonetically and can think, "It started with a V sound and it rhymed with belly."
Semantic Processing
Semantic processing is when we apply meaning to words and compare/relate it to words with similar meanings. This deeper level of processing involves elaborative rehearsal, which is a more meaningful way to analyze information. This makes it more likely that the information will be stored in long-term memory, as it is associated with previously learned concepts.
One example of taking advantage of deeper semantic processing to improve retention is using the method of loci. This is when you associate nonvisual material with something that can be visualized. Creating additional links between one memory and another, more familiar memory works as a cue for the new information being learned.
Imagine walking through a familiar area, such as your apartment. As you come to familiar sites, imagine that you can see the things you need to remember. Suppose you have to remember the first four presidents of the United States: Washington, Adams, Jefferson, and Madison. Your apartment also has four rooms: living room, kitchen, bathroom, and bedroom. Associate the first president, Washington, with the first room (the living room). Imagine him standing on your sofa as if it were the boat on which he crossed the Delaware River. Now, the second room is the kitchen, and so you imagine John Adams there. Think about him going over to the refrigerator, opening up and taking out a beer and remarking that his brother Samuel had brewed it. And so on for the rest of the presidents...