Behavior can have an impact on genetic makeup, even as early as the prenatal period. It is important to understand the implications of behavior on genetic makeup in order to reduce negative environmental and behavioral influences on genes.
EEG and PET scans have the ability to show psychologists how certain behaviors trigger reactions in the brain. This has led to the discovery of specific genes, such as those that influence addictive behaviors. A variety of behaviors have been shown to influence gene expression, including—but not limited to—drug use, exposure to the elements, and dietary habits.
Drugs and Alcohol
Prenatal exposure to certain substances, particularly drugs and alcohol, has detrimental effects on a growing fetus. The most serious consequences of prenatal drug or alcohol exposure involve newborn addiction and fetal alcohol syndrome (FAS). Fetal alcohol syndrome affects both physical and mental development, damaging neurons within the brain and often leading to cognitive impairment and below-average weight. Exposure to drugs and alcohol can also influence the genes of children and adults. Addiction is thought to have a genetic component, which may or may not be caused by a genetic mutation resulting from drug or alcohol use.
Temperature
Temperature exposure can affect gene expression. For example, in Himalayan rabbits, the genetic expressions of fur, skin, and eyes are regulated by temperature. In the warm areas of the rabbits' bodies, the fur lacks pigment due to gene inactivity and turns white. On the extremities of the rabbits' bodies (nose, ears and feet) the gene is activated and therefore pigmented (usually black).
Himalayan rabbit
Exposure to cold temperatures activates pigment-producing genes in the rabbit's extremities.
Light
Light exposure also influences genetic expression. Thomas Hunt Morgan performed an experiment in which he exposed some caterpillars to light and kept others in darkness. Those exposed to certain light frequencies had corresponding wing colors when they became butterflies (for example, red produced vibrant wing color, whereas blue led to pale wings). Darkness resulted in the palest wing color, leading him to conclude that light exposure influenced the genes of the butterflies. In this manner a caterpillar's behavior can directly affect gene expression; a caterpillar that actively seeks out light will appear different as a butterfly than one that avoids it.
Nutrition
Lack of proper nutrition in early childhood is yet another factor that can lead to the alteration of genetic makeup. Human children who lack proper nutrition in the first three years of life tend to have more genetic problems later in life, such as health issues and problems with school performance.