The resolution of an optical imaging system (e.g., a microscope, telescope, or camera) can be limited by factors such as imperfections in the lenses or misalignment. However, there is a fundamental maximum to the resolution of any optical system that is due to diffraction (a wave nature of light). An optical system with the ability to produce images with angular resolution as good as the instrument's theoretical limit is said to be diffraction limited.
For telescopes with circular apertures, the size of the smallest feature in an image that is diffraction limited is the size of the Airy disc, as shown in . As one decreases the size of the aperture in a lens, diffraction increases and the ring features from diffraction become more prominent. Similarly, when imaged objects get smaller, features from diffraction begin to blur the boundary of the object. Since effects of diffraction become most prominent for waves whose wavelength is roughly similar to the dimensions of the diffracting objects, the wavelength of the imaging beam sets a fundamental limit on the resolution of any optical system.
Airy Disk
Computer-generated image of an Airy disk. The gray scale intensities have been adjusted to enhance the brightness of the outer rings of the Airy pattern.
The Abbe Diffraction Limit for a Microscope
The observation of sub-wavelength structures with microscopes is difficult because of the Abbe diffraction limit. In 1873, Ernst Abbe found that light, with wavelength λ, traveling in a medium with refractive index n, cannot be converged to a spot with a radius less than:
The denominator
Improving Resolution
To increase the resolution, shorter wavelengths can be used such as UV and X-ray microscopes. These techniques offer better resolution but are expensive, suffer from lack of contrast in biological samples and may damage the sample. There are techniques for producing images that appear to have higher resolution than allowed by simple use of diffraction-limited optics. Although these techniques improve some aspect of resolution, they generally involve an enormous increase in cost and complexity. Usually the technique is only appropriate for a small subset of imaging problems.