Characteristics of Communities
Communities are complex entities that can be characterized by their structure (the types and numbers of species present) and dynamics (how communities change over time). Understanding community structure and dynamics enables community ecologists to manage ecosystems more effectively. There are three main types of species that serve as the basis for a community. These include the foundation species, keystone species, and invasive species. Each of these has a specific role in how communities are formed.
Foundation Species
Foundation species are considered the "base" or "bedrock" of a community, having the greatest influence on its overall structure. They are usually the primary producers: organisms that bring most of the energy into the community. Kelp, a brown algae, is a foundation species that forms the basis of the kelp forests off the coast of California.
Foundation species may physically modify the environment to produce and maintain habitats that benefit the other organisms that use them. An example is the photosynthetic corals of the coral reef . Corals themselves are not photosynthetic, but harbor symbionts within their body tissues (dinoflagellates called zooxanthellae) that perform photosynthesis; this is another example of a mutualism. The exoskeletons of living and dead coral make up most of the reef structure, which protects many other species from waves and ocean currents.
Foundation species
Coral is the foundation species of coral reef ecosystems. The photosynthetic algae within the corals provides energy for them so that they can build the reefs.
Keystone Species
A keystone species is one whose presence is key to maintaining biodiversity within an ecosystem and to upholding an ecological community's structure. The intertidal sea star, Pisaster ochraceus, of the northwestern United States is a keystone species . Studies have shown that when this organism is removed from communities, populations of their natural prey (mussels) increase, completely altering the species composition and reducing biodiversity. Another keystone species is the banded tetra, a fish in tropical streams, which supplies nearly all of the phosphorus, a necessary inorganic nutrient, to the rest of the community. If these fish were to become extinct, the community would be greatly affected.
Keystone species maintain biodiveristy
The Pisaster ochraceus sea star is a keystone species. When this animal is removed from certain areas, its prey species greatly alters the dynamics of the ecosystem, reducing biodiversity.
Invasive Species
Invasive species are foreign species whose introduction can cause harm to the economy and the environment. These species have many ways of entering foreign environments, including through ship's ballast water: when planes take off, organisms can sometimes become stuck in the cargo area. When the plane arrives in its destination, the organisms are now in a foreign environment. Travelers sometimes illegally smuggle items, such as fruits, plants, or even animals as pets, from one state or country to another. .
Invasive species threaten ecosystems
In the United States, invasive species such as (a) purple loosestrife (Lythrum salicaria) and the (b) zebra mussel (Dreissena polymorpha) threaten certain ecosystems. Some forests are threatened by the spread of (c) common buckthorn (Rhamnus cathartica), (d) garlic mustard (Alliaria petiolata), and (e) the emerald ash borer (Agrilus planipennis). The (f) European starling (Sturnus vulgaris) may compete with native bird species for nest holes.
Invasive species are often better competitors than native species, resulting in population explosions. These new species usually overtake the native populations, driving them to localized extinctions.
One of the many recent proliferations of an invasive species concerns the growth of Asian carp populations. Asian carp were introduced to the United States in the 1970s by fisheries and sewage treatment facilities that used the fish's excellent filter feeding capabilities to clean their ponds of excess plankton. Some of the fish escaped, however, and by the 1980s, they had colonized many waterways of the Mississippi River basin, including the Illinois and Missouri Rivers.
Voracious eaters and rapid reproducers, Asian carp may outcompete native species for food, potentially leading to native species extinctions. For example, black carp are voracious eaters of native mussels and snails, limiting this food source for native fish species. Silver carp eat plankton that native mussels and snails feed upon, reducing this food source by a different alteration of the food web. In some areas of the Mississippi River, Asian carp species have become predominant, effectively outcompeting native fish for habitat. In some parts of the Illinois River, Asian carp constitute 95 percent of the community's biomass. Although edible, the fish is bony and not a desirable food in the United States. Moreover, their presence threatens the native fish and fisheries of the Great Lakes, which are important to local economies and recreational anglers. Asian carp have even injured humans. The fish, frightened by the sound of approaching motorboats, thrust themselves into the air, often landing in the boat or directly hitting the boaters.
One infested waterway of particular importance is the Chicago Sanitary and Ship Channel, the major supply waterway linking the Great Lakes to the Mississippi River. To prevent the Asian carp from leaving the canal, a series of electric barriers have been successfully used to discourage their migration; however, the threat is significant enough that several states and Canada have sued to have the Chicago channel permanently cut off from Lake Michigan. Local and national politicians have weighed in on how to solve the problem, but no one knows whether the Asian carp will ultimately be considered a nuisance, like other invasive species, such as the water hyacinth and zebra mussel, or whether it will be the destroyer of the largest freshwater fishery of the world.